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ABSTRACT

A procedure is described which permits the computation

of the radiation characteristics of a transducer array given the

electrical inputs to the transducer elements. The effects of

transducer element interactions (acoustic coupling) and dome-

transducer interactions are included in the computation.

The dome-transducer configuration chosen for this study

is a rectangular array of circular elements mounted in a spher-

ical baffle. This array is surrounded by a concentric, homog-

eneous dome. Numerical results include (a) radiation loadings

on the transducer elements, (b) response (head velocity) of each

element to prescribed electrical inputs and (c) farfield beam

patterns for the dome/array. The results indicate that element

interactions and dome/array interactions can affect element re-

sponse to the electrical input and thereby degrade transmit per-

formance of the transducer array.
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1. INTRODUCTION

The effects of acoustic coupling among transducer ele-

ments on the performance of large sonar transducer arrays oper-

ating at low frequencies have been the subject of extensive

research. In independent studies, the effect of a dome on near-

field and farfield radiation characteristics of such arrays has

been investigated assuming negligible coupling effects among the

elements. It has been found that the presence of a dome can

significantly alter the radiation loading on an active array

relative to the loading in the absence of the dome. The purpose

of this memorandum is to illustrate a technique for determining

the effects of acoustic coupling, both among transducer elements

and between the dome and array, on array performance.

When a single transducer element is radiating into a

free field, the radiation impedance seen by the element is essen-

tially pc, the characteristic impedance of the surrounding medium.

If a specified array of elements is considered, the radiation

loading on any one element depends on several factors, including

element location in the array, array configuration (cylindrical,

spherical, etc.), beam steering/tilt angle, and frequency. When

the array is surrounded by a dome, the element radiation loadings

are modified further. The radiation loading on any single ele-

ment can determine the response (head velocity) of that element,

assuming a known driving voltage or current. Since the element

loadings can vary considerably in the array, the velocity dis-

tribution of the array and, consequently, the radiation charac-

teristics of the dome/array can be affected compared to the ideal

case for which an element response is uniquely determined by that

element's applied electrical signal.

To analyze element response in the dome/array environ-

ment and subsequently compute dome/array radiation characteris-

tics, one must have (1) a dome/array model which can treat

I-
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radiation due to an arbitrary number of elements having arbitrary

head velocities, and (2) a transducer element model which yields

response as a function of radiation loading for prescribed input

voltage or current. The procedure is demonstrated in this memo-

randum through utilization of a spherical array surrounded by a

concentric shell and an assumed transducer element model.

2
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2. BACKGROUND

Transducer element modeling has progressed in stages

from crude lumped parameter models to more sophisticated ones

in which components of the element are treated as continuous

media*. As one goal, these models seek to relate realistically

the response of an element to a prescribed electrical signal as

a function of radiation loading. Often these models are repre-

sented by equivalent circuits. In this form, the input variables,

voltage and current, can be related to the output variables, head

velocity and radiation force, by a pair of linear independent

equations. The coefficients in these equations are obtained

through mathematical and experimental analysis of the element.

The element modeling has been accompanied by much

analytical and experimental effort to determine the effect of

the array environment (radiation loading) on element response**.

If we consider an array of elements and assume the ith element

has a nead velocity v i and as a result produces a sound pressure

field pi, then a force is created on each of the neighboring

elements. In particular, the force F.. on the jth element isiJ

JFiJ pi dJ

S.I

where S. is the area of the jth element. If F.. is normalized
J i J

by v. then we define the interaction coefficient Z.. between the
ith and jth pistons as

*D. G. CarsonG. E. Martin, et. al., of the Transducer Division,

NUWC have been principal contributors in this area.

"'Among others, the NUWC group and D. T. Porter of USN/USL have
been active in this area.

3
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F
Z.. = (2)] v i

with Zjj = ..

The total force F. on the jth element due to N activeJ
elements in the array is*

N N

F.= F..= Z.. v. (3)
i=l i=l

with Z.. v. the radiation force on the jth element due to its
j] 3 rad

own motion. The total radiation impedance Z. seen by the jth

element is given as

N ~V.
Zrad v 1 (4)

J j V.
i=l v

If the internal impedance of the element is Zoc (the same for all
elements in the array), then the head velocity v i can be related

(see Ref. 1) to the current II (or voltage) applied to the ith

element by

I. = Y(Z + Z )v.oc (5)

where y is a complex constant dependent on the element component

materials, dimensions, static biases, etc., and the operating

frequency. Note from Eq. (5) that, in general, the head velocity

of the ith element depends on the head velocities of all the ele-

ments, i.e., the currents and head velocities are related by a

set of simultaneous equations. In matrix notation Eq. (5) is

represented as

*Interaction effects due to nonactive elements are not considered

here, although they can be included in the analysis.

4
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[I I = [ijI][v i  (6)

with ai = YZij3 i~j and aii = Y(Zii I Zoc)- A similar relation

exists for voltage controlled elements.

The above relation permits the computation of a set of

head velocities for a prescribed set of currents, assuming the

Zij can be computed. For the computation of the Z a mathemati-

cal model is required which simulates the dome/array of interest.

The array model must allow the computation of the sound pressure

produced at any point on the array by an element having arbitrary

location in the array and arbitrary head velocity. This model

is exercised between all element pairs to obtain the set of Z...

(Symmetry considerations often allow a reduction in the required

number of computations.) A set of head velocities is then deter-

mined from Eq. (6) for known [Ii), Zoc , and y. This set of head

velocities is utilized in the dome/array model to compute near-

field and farfield sound pressure levels, beam patterns, etc.

Descriptions of several dome/array models which can be used in

such a series of computations are given in Ref. 2.

5
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3. TECHNICAL DESCRIPTION

The dome/array model chosen for this study consists of

a rectangular array of close-packed, circular elements on a

spherical baffle. The baffle is surrounded by a concentric shell

as shown in Fig. 1. Radiation characteristics for this model,

assuming element velocities independent of radiation loading,

have been studied in Ref. 3.

The analysis is initiated by considering the sound

pressure field produced by a single circular piston or element

radiating with harmonic time dependence. As shown in Ref. 3,

the sound pressure field p1 between the array and dome is given

by

P, [Amjm(kr) + Bmnm(kr)] P (cos 4) e-iWt (7)

m= o

and the sound pressure exterior to the dome, P 2 ' is given by

c-

P 2 = m Ch m (kr) Pm(cos *) e - iWt . (8)

m=o

In the above expressions, jm(kr), nm(kr), and hm(kr) are the mth

order spherical Bessel, Neumann, and Hankel functions respectively,

k is the wave number, Pm(cos ) is the mth order Legendre poly-

nomial, i is the polar angle measured from an axis through the

center of the element (the problem is axisymmetric), and w is

the angular frequency. A B and Cm are constants determined

by the boundary conditions. The boundary conditions are defined

by specifying the normal particle velocity of the fluid to be

zero everywhere on the sphere, except for the piston, which has

a uniform velocity V0 e - iwt and requiring the normal particle

velocity at fluid-shell interfaces to be continuous.

6
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Three basic steps are involved in obtaining radiation

characteristics of the dome/array from the known electrical inputs

to the transducer elements. These are:

1. The loading produced by any element on the remaining

elements in the array is obtained by integrating

Eq. (7), evaluated on the array surface, over each

element in the array for all pairs of elements as

in Eq. (1). These loadings are then converted to

Z.. as in Eq. (2).iJ

2. The set of head velocities .4s obtained by solving

the set of equations given by Eq. (5) for known

input currents (or voltages), element characteris-

tics, and the Z.. obtained under (1) above.iJ

3. Equation (7) is evaluated for each element using

the head velocity computed in (2) above, and the

resulting element pressure fields are superimposed

to obtain the sound pressure field for the array

between the array and dome. The sound pressure

field exterior to the dome is obtained as a super-

position of the individual element pressures given

by Eq. (8).

The first step, determining the Z ij is straightforward.

As shown in the appendix, the sound pressure field produced by a

single piston has the form

P1= V i-- nn-(cos a) Pn+l(cos a)] P(cos ) (9)

when evaluated on the array surface. In the above equation, the

In are constants depending on the dome/array dimensions, dome

material properties, and frequency, and a is the angular half-

width of the element (if the element radius is a and the array
ao 0

radius is a, then a = arctan--). To obtain the loading on the

8



O 6500 TRACOR LANE. AUSTIN. TEXAS 78721

jth element in the array, separated from the ith element by an

angle , we integrate Eq. (9) over the jth element and obtain

2 - [Pn-I(cos L) - Pn+l(cos a)]'F.. = V° ra oc n P (cos e).(l0)
13 0 n 2n+l

n=o

2
F.. will be normalized by r-aopc so that
13 0

a - n[ (cos CL) - Pn (cos CL)]2

Z.. [Pn n)l (Cos aP ((ic)-- n 2n+l Pn (a
o n=o

The Z.. are computed for all pairs of active elements in the
'1

array.

The next step in the series of computations is the

determination of the set of element head velocities. For these

computations, Zrad for each element and Z must be determined.

Z oc is obtained from the transducer element model. An example

of the type of element considered in this memorandum is shown

in Fig. 2. Along with a cross section view, a circuit schematic

is shown. The components are assumed to be one-dimensional media.

Wave propagation in the media is described by linear elasticity

theory. The components of the element must satisfy boundary

conditions at their juncture with other components. For example,

forces and velocities must be continuous at the boundaries of

each component. For the passive components (head mass, tail

mass, etc.), displacements satisfy the scalar wave equation, but

for the active component (ceramic), a mechanical strain component

due to the applied electrical signal must be considered. Solu-

tions to the governing differential equations can be obtained by

usual techniques. Due to the coupling of the element components

at the boundaries (e.g. stress rod - tail mass interface), the

equations describing component motion are coupled. The derivation

9
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of the element model and an accompanying equivalent circuit are

shown in detail in Ref. 1.

For this study, an element model similar to the one

shown in Fig. 2 and analyzed in Ref. 1 was adopted. This ele-

ment has a Zoc which varies with frequency as shown in Fig. 3.

(Z is plotted as a function of ka, where k is the wave --,umber
oc

and a is the radius of the sphere). For a given ka, Z is

obtained from this curve, the constant y is computed, and the

Zij (also a function of ka) are computed. These quantities,

together with the prescribed electrical signals, are then used

to compute a set of head velocities [vi from Eq. (6).

The final step in the computations is the evaluation

of the radiation characteristics of the array. First, the pres-

sure fields of the individual elements are computed from Eq. (7)

(nearfield) or Eq. (8) (farfield). These are then superimposed

to obtain the pressure field for the array. A simple angle

transformation is used in the superposition, as discussed in the

Appendix. This superposition of the element pressure fields

completes the series of computations.

.
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4. NUMERICAL RESULTS

Numerical Results are presented for three cases; (1)

at the "tuned" frequency f., for ka = 36.0, where Zoc is a maxi-

mum, (2) at a frequency fL' below fo' at which ka = 31.9, and

(3) for "ideal" head velocities, i.e., the head velocity of each

element is affected only by the self-impedance of that element.

Results are shown both with and without dome for each of the

three cases.

The transducer used in the computations consists of an

array of 8 x 24 half-wavelength (at fo' ka = 36.0), close-packed

circular elements. The dome has kb = 51.0 and kh = 0.1164 at f

and has a specific gravity of 7.86 (steel). The input currents

(IiI are of equal unit amplitude and phase delayed to a plane

for each frequency.

Figures 4-7 show contour maps of the magnitude of the

total radiation loading on the array. The data in each curve

are normalized within that data set. The range of loading from

the minimum to maximum is divided into equal increments with

symbol "1" corresponding to the lowest value and "A" corresponding

to the highest value. The effect of e dome on radiation loadings

is graphically illustrated by a comparison of Figs. 6 and 7. For

frequency fL and no dome, the radiation loadings are nearly con-

stant over the broad, central portion of the array, and increase

smoothly to maximum values at the corners. However, the addition

of a dome (Fig. 7) causes a large buildup of radiation loading

in the central portion of the array. Note that the radiation

loading exceeds Z oc by an order of magnitude for the case shown

in Fig. 7.

The normalized magnitudes of the velocities at frequency

fL) with a dome, for two rows of the array are shown in Fig. 8.

Comparing Fig. 7 and Fig. 8 shows good correlation between them,

in that elements with less radiation loading have higher velocity

magnitudes.

13
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The farfield beam patterns are presented in Figs. 9-11

with patterns for both ideal and computed velocities superimposed

on the same figure. The beam patterns are normalized and do not

show the effects of acoustic coupling on insertion loss. These

patterns show that including element interaction results here in

a slightly narrower main lobe and increased side lobe levels.

The most serious difference is the case (Fig. 11) with frequency

fT. with a dome, where the first side lobe is up nearly 10 dB

from the ideal case, and the main lobe is about 2' narrower.

Figure 12 shows the insertion loss (change in intensity on the

beam axis) for each beam pattern computed at f relative to the

no-dome case with "ideal" velocities at fo" It can be seen that

both dome interaction and element interaction influence insertion

loss. The relative importance of dome-transducer interactions

and element interactions in determining insertion loss should 
not

be generalized from these results because of the strong dependence

of these interactions on dome-transducer geometry, frequency, 
and

element size and spacing.

19
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5. CONCLUSIONS

This memorandum demonstrates a procedure for analyzing

the effects of transducer element interactions and dome/array

interactions on element response and, consequently, radiation

characteristics of the array. As shown in the computed results,

these interactions can have significant effect on the performance

of an array. Realistic analysis of interaction effects is par-

ticularly important if the array must perform over a frequency

band. In this case the internal impedance of the element,

usually a maximum over a narrow range of frequency, and the

radiation impedance can be of similar magnitude at the upper and

lower limits of the operational frequency band. As a result,

the radiation characteristics of the array can be degraded.

24
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APPENDIX

SPHERICAL TRANSDUCER-DOME MODEL

The analysis of the spherical transducer with concentric

spherical dome, outlined here, is presented in a previous tech-

nical memorandum [Ref. 3]. The geometry of the spherical trans-

ducer and dome is shown in Fig. 1.

The first step in the analysis is to obtain the solution

for the sound pressure radiated by a single circular piston. A

piston vibrating with harmonic time dependence will produce a

sound pressure field between the dome and transducer which can
\ -iwt

be represented by the expansion (in which e time dependence

is understood),

CO

P 1  Z [Amjm(kr) + Bm nm(kr)] Pm(cos (A-1)

m=0

This form is standard for solutions of the wave equation in spheri-

cal coordinates (r, 4) if there is symmetry about the axis from

which the angle r is measured. The Pm are Legendre polynomials

of arguI-nt cos i and the jm and nm are, respectively, the spheri-

cal Bessel and Neumann functions of argument kr. The A and Bm m
are constants which can be adjusted to make the solution form

fit whatever boundary conditions are prescribed on the transducer

and shell surfaces. The boundary conditions arise in equating

the fluid and solid velocity components normal to the fluid-solid

interfaces. Velocity components tangential to the interfaces are

not necessarily equal since the fluid is assumed inviscid.

For the case at hand, the fluid velocity is equal to the

piston velocity on the piston surface and is zero on the remain-

ing transducer surface. The piston velocity, v0 e iwt, will be

considered to be purely radial, so the boundary condition at the

transducer surface r = a is

A-i

4'
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V'o' 0 < rI

jk F J,'(ka) + B nm(ka)] P (cos () = .A-2)
mWPm mm i 0) a < 5 7

m=0

Here the angular extent of the piston is 0 -< < a. the radial

fluid velocity component being zero outside of this range. The

primes on the jm and n m denote differentiation with respect to

argument.

While the pressure field between the transducer and

dome has the form given in Eq. (A-2), the sound pressure field,

outside the dome must have a form which describes only out-

going radiation. This form is

P2 C= Chm(kr) Pm(cos ) , (A-3)
m=0

where hm = Jm + i nm is a spherical Hankel function and the Cm

are determined by the boundary condition at the outer dome sur-

face. Since the dome is thin relative to an acoustic wavelength,

it is sufficient to apply the velocity continuity condition at
the dome midsurface, r = b, rather than at the actual fluid-dome

interfaces. Thus,

]. 6Pl i P2I = __] = w (A-4)iw--6 iwp 6iLW rr=b r=b

w being the radial velocity distribution of the dome. From the

given boundary conditions and the analysis of the dome motion

given in the earlier technical memorandum F Ref. 3] the unknown

coefficients Am, Bm, and Cm can be found. Equations (A-l) and

(A-3) can now be used to find nearfield and farfield pressures

respectively.

The pressure field, pI, generated by a single piston

and evaluated at the transducer surface, is found to be

A-2
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p- Vo -- P n-l(CS c) Pn+l ( c s  )] COS ) , (A-5)

n

where

z
h (ka) +-4n (kb)2n ic n -'(kb)[j(ka)n(kb) j'(kb)nn (ka)]

n = n Z k)
h'(ka) + n (kb) 2 hn (kb) [ ' ' (ka)n'(kb) - Jn~' (kb)n n (ka) ]n np n F 1

and Z is the modal impedance of the shell (see Ref. 3). This

pressure field causes a net force on the other elements in an

array.

The farfield pressure distribution can be computed

from Eq. (A-3) by substituting into it the asymptotic form of

hm(kr) for large r, which ism m-

Lim h (kr) = -m- ikr
M kr

Thus,

Lim p(r,*) = pcv e (kr-wt) F(cos ul) , (A-6)r -oo r

where

Fc7 i- m l(Cos G) - em+l(cos a)] Pr(cos ")
F (cos ul) = -K$ ) Z

z2
m=O h' (ka) + m-(kb)2h'(kb)jm(ka) n' (kb)-Jm(kb)n' (ka

Mp cm m

This expression detemnines the farfield characteristics for a

single piston.

The farfield (or, similarly, the nearfield) sound pres-

sure, p(r,e, ), of an array of pistors can be found by superposi-

tion of the fields produced by the individual pistons. The piston

A-3

.



6500 TRACOR LANE. AUSTIN, TEXAS 78721

with center at 8J, ., on the transducer has velocity vje'iit

The cosine of the angle between e, and @j, j is just

Cos = Cos Cos + sin ) sin G Cos ( (A-7)

Superposition of the pressure fields of an array of N
! pistons gives

ei(kr - ~t)
p(r,e,9) = pc r D(eO) (A-8)

where
N

D(a, ) = j F(cos J)

J=l

PC p* p, where theThe farfield intensity distribution I is ppwrt

asterisk denotes the complex conjugate. Therefore,

I = -2 D(O,) (A-9

r

A-4
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